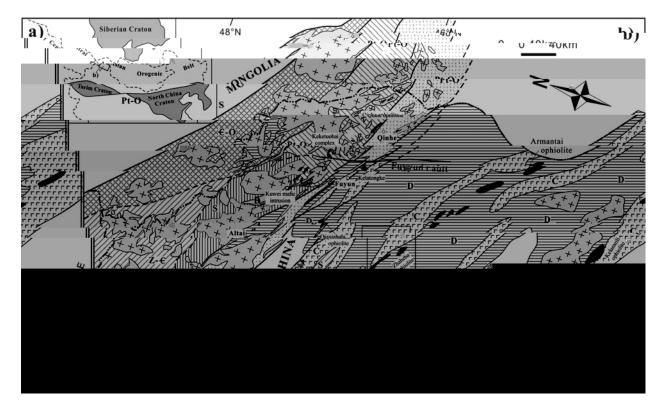
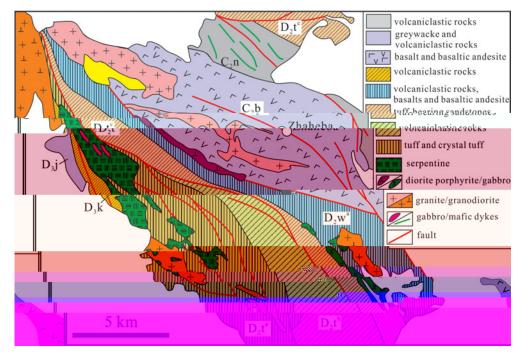

Geol. Mag. 154 (3), 2017, pp. 419–440. Cambridge University Press 2016


(Received 1 \land 1 2015 accepted \downarrow 2016 first published online 1 \land 1 2016)

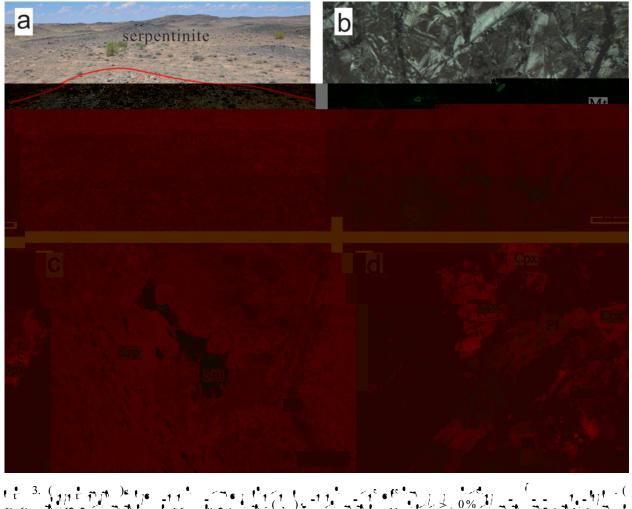
1. I. c. .

1.17 11 · 7 - -ננ<u>י</u> (1) et al. 200 et al. 2012 et al. 2012, 2013 et al. 2013), let al. 2013), 7 4 1 1 197 -, ___1 - 1 et al. 200 11 1 et 'al. 200 a). 200 a). 1 1 1 1 1 1 1 3 1 et al. 2000 c 1 et al. 2000 ~~1. \$~1°1. ~ 1~~~ ~ 1 -

1 R. II 411 -(۴ آ ™ 17 KK^T [©] 6 <u>; 1</u> - 47 116 1 + 11 m 節), ¹3 [-, / (**t**-, **č**, -, 2000 / et al. 2002 & et al. 2004, 200°*a*) (. . 1 1,761 7 , T1 (et al. 200 d,b / h-1-1-21 -, <mark>2012</mark>). íτ.)• J ٦ 4 ,1,31,5 et al. 2003 et al.



 $\begin{array}{c} \mathbf{r} & \mathbf$

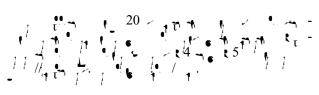

7.6 11 117 1 1 ግ ተ 節 6 1 5-1 $I_{\tilde{t}}$ (1) 1. ĩ e $-I_{\tau}$ 5 1 t te, ••• **~** (2) ~~1° ł 5 1 6 1 1] • - -6 †

í 1 11 τ 1 ີ2). ເ U η 15 1. 1 11 _ ŧ • T **f**n -). 311 1 . F 1, • - Π η τ΄ 1 **`**•! ~ **+**¹ Ł Ju. ~ 1. -11 .4 -

0%. 1]-1 <`>• . 3 (). ۰ ⁻ τ et al. 2013). 節 ł 6 T 1 m (30¹50%) (40 0%)-6 • (5 10%)~ đ SIP). ₹**6** t) e ti • τ 1. 5 h 4 4 \$T 1 -11 1] 6 k)1 (••• 6)-, • τţ ¢ (/ ¢. 新 () 新 () n m et al. 2006).) (₁-Im 1 T ۰, 1] Ç -4 2) ted Ť ŧ 41 ¢ k ,¹1, 3). t ſĹ 11---1 m - 1 Ç 1.14 1

 $\begin{array}{c} \bullet \bullet \bullet \bullet & \bullet \\ \bullet \bullet \bullet \bullet & \bullet \\ \bullet \bullet & \bullet \\ \bullet & \bullet \\$

 $\begin{array}{c} \mathbf{x} + \mathbf{v} = 3 \quad \left(\begin{array}{c} 1 + \mathbf{v} +$


•. -•• =

3. A a ca, c

3.a. Z c U Pb a $(2013 cdot 01, 46^{\circ} 32 51, 1) \circ 2 4$ $(2013 cdot 02, 46^{\circ} 33 2, 0) 1 0$ ~. • - 1. t 1 7 **!**) 6 A 61 U 'n 6 T 174-1-6 ¹ اس م **۱**, f -τĦ ° ¶ 1/1 • ۳ 1.1. 1. • = 0.0020052),

3.b. M. a a a

-15

3.c. W - c a a

1 1 4 To •⊂ T_• ، 4 - . -tet al. ъŕ -**!**.t (2004). • ---- ¹, 6 2 %. **.** 6000 L et al. (2004). 5 t (]]1 et al. $(2004)^{1/1/1}$ 30 - 1-3 1] - 171 1 $\begin{array}{c} \mathbf{1} & \mathbf{$

- 4. A a ca
- 4.a. Z c U Pb a

		т г е	- q q		r • il i l					
R , , ,	2013 01-1	2013 . 01-3	20132 01-4	2013 . 01-5	2013 . 01-6	2013 01-	2013 01-	2013 01 1	2013 01 2	2013 01 4
11	٢)	C	t)	۲,	۲)	t)	۲,	C	ſ	C'
					Major elements	(%)				
KI 2	3.0	4.20	3.41	3.62	322	3.2	3.05	4.22	46.4	51.2
÷ 2	0.05	0.20	0.05	0.05	0.04	0.05	0.04	0.14	0.12	0.2
. 2 3	0.61	1.6	1.04	0.6	0.0	0.4	0.0	1.2	164	1.33
≤ 2 3	.44	4.6		36	.5	.16	. 4	3.6	3.24	3
. ~	0.0	0.10	0.11	•0.11	0.11	0.0	0.11	0.0	0.0	0.0
<u> </u>	3.21	24.5	3.2	3	3.0	3.31	3.44	10.04	.03	5
L	0.12	15.42	0.15	0.14	0.2	0.10	0.140		•	•
,					•		•	1		

ç	1	1.	ĩ	4	τ	6
---	---	----	---	---	---	---

, r _{1 ·1}	2013 . 01-1	2013 . 01-3	20132 . 01-4	2013 . 01-5	2013 . 01-6	2013 . 01-	2013 . 01-	2013 01 1	2013 . 01 2	2013 . 01 4
<u>1</u>	<u>`)</u>	C	<u>``</u>	()	()	()	<u>``</u>	ſ	C	<u> </u>
S .	0.005	0.064	0.00	0.005	0.00	0.003	0.003	0.051	0.044	0.222
1	0.021	0.34	0.044	0.042	0.0 2	0.031	0.033	0.310	0.25	1.450
λ.	0.004	0.04	0.00	0.00	0.011	0.005	0.005	0.04	0.043	0.21
č	0.011	0.232	0.036	0.044	0.012	0.034	0.00	0.123	0.0 0	0. 3
с.	0.0 0	0.036	0.03	0.03	0.06	0.026	0.025	0.046	0.031	0.06
1	0.26	1. 10	6.600	1. 0	0, 3	0.233	1.150	1.5 0	0.516	0.1 5
	0.406	0.0 2	0.12	0.112	0.0	0.1	0.054	0.16	0.1 1	0.6 5
5	0.046	0.034	0.014	0.02	0.050	0.030	0.010	0.050	0.02	0.130
7	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.0	0.066	0.042	0.0 3
·	2013 . 01 5	2013 01 6	2013 . 01	2013 . 01	2013 . 01	2013 . 03 2	2013 . 03 3	2013 03 4	2013 03 5	2013 01 3
	c	C	(_c 1)	• (_c 1)	2013×01	(_c 1)	(_c 1)	(_c 1)	(_c 1)	(_c 2)
1	•	•	•	• /	Major elements ((%)	•	•	• /	• 1
2	4.1	45.	4 .	53.1	51, 1 1.31	50.40	50.54	50.52	51.22	52.3
- 2	0.34	0.15	1.40	1.24		1.0	1.63	1.31	1.1	0.33
. 2 3	1	1.5	16.5	16.1 .1 ¹	15. 3	15.	16. 6	15.55	15.4	1.61
≤ ¹ 2 3	4.52	3.34		.11	.43	.0	.50	•0.14	. 2	3.44
. ~	0.0 6.	0.0	0.11	0.10	0.11	0.13	•0.11		0.12	0.0
<u> </u>		.42	4. 0	4.2	4.41	5. 6. •5	3.2 4.52	6.06	.14	4.
2	11.03	12.61	6.22	5.5	6.3 .00	6. 5		4. •0	.26	0 .11
2	4.6	.3	. 2	.3 0.31		4.52	.31	4. 0	4.0	
J ₂	0.13	0.11	0.3 0.62	0.31	0.42	2.04	0.33	1.2	2.03	0.1
2 5	0.04	0.02	0.62	0.62	0.65	0. 4	0.6	0.4	0.44	0.04
× 1	3. 2	3.26	4.24	2.54	2. 3	2.2	5.14	2.65	1. 3	2.
ιĘ	<u>.</u> . 5	··· ²	. 6	•••• ⁰	.4	.40	•••. ¹ .64	• • .6 6.0	.6	<u> </u>
	4.	.4	.11 55	. 0	.42	6.56		6.0	6.11	.2
、 [/] #	-5	I	55	54	54	56	41	56	64	4
-					Trace elements (p					
> 1	.0	4.5	1.16	1.12	1.4	.0	40.4	5.2	6. 2	5. 1
	0.22	0.135	1.2 4	1.6 3	1.316	1.53 .5	1.034	1.100	0.5 5	0.62
t.	25.0	23.	1.6	1.5	1.5	.5	1.2	25.2	1	10
_	11	3.	1 6	166	1 2	22	22	254	1	5.
.	34.	163	60.5	62.6	64.1	116	1.	<u>,</u> 0.	203	23.
11	24.2	21.6	26.	23.6	24.6	2.	2 .5	2 .0	2.0	16.4
	<u>,</u> 4.	1 5	63.6	50.	51.4	6.	2.	5.3	132	1.1

×.

¢

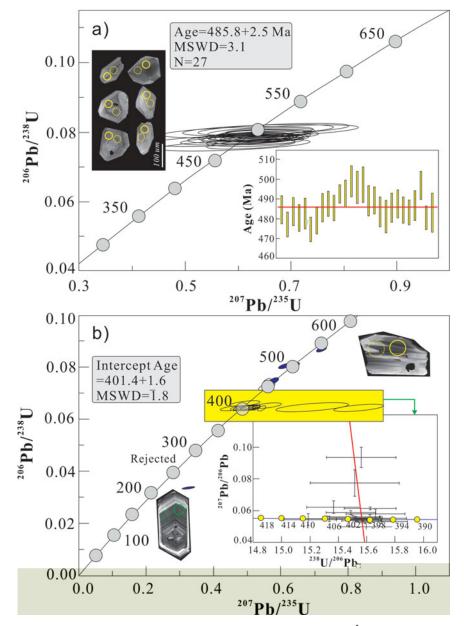
<u>ل الم</u>	j † f €									
1.1	2013 . 01 5	2013 . 01 6	2013 01	2013 01	2013 . 01	2013 . 03 2	2013 . 03 3	2013 . 03 4	2013 . 03 5	2013 01 3
11	C	C	(<u>c</u> 1)	• (_c 1)	(_c 1)	(<u>r</u> 1)	(<u>r</u> 1)	(<u>c</u> 1)	(<u>r</u> 1)	(<u>c</u> 2)
`	3.	1.20	3.60	46. 0	4 .30	23.40	43.00	25.20	32, 0	6.56

· 1^{1.} (1⁻¹ · · ·

]]	2013 ~ 01 11 (-2)	2013 $\times 02$ 1 (-2)	$2013 \times 02 2$	2013 × 03 1 (~ 1)	2013 x 03 6 (r 1)	2013 x 01 10 (c 2)	04 06 • (~ 1)	$\begin{array}{c} 04 & 24 \\ (-1) \end{array}$	$ \begin{array}{c} 04 & 2 \\ (, 1) \end{array} $	03 ⁷ 1
1	•			Trace elem	ents (ppm)	• /	• /	• /	• /	v
•	1.4	36.	42.4	26.0	32.4	1	/	/	/	/
	0.3.5	0.153	0.35	1.1 25.1	0, 4	0.46	/	/	/	/
	32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	1.	20.3
	1 4	203	21	33	341	1 5	144	14	214	265
	56.5	44.2	4.	1.	22.2	53.	15	162	214	265
	34.	3.5	3.3	23.1	24.	33.	20.6	30.	² 5.5	20.2
	66.4	4.6	6.4	25.4	2.1	66.6	<u>ن</u> ا	114	5.5	.02
r	6.4	236.4	256.	205.4	20	114.20	• /	/	/	/
L C	• 4 .0	44.1	4.0	•14. 4.	103	44.1	/	/	/	/
	12.0	11.1	İ 1.2	14.	13.6	12.0	/	/	/	/
	0.5	1.420	1.0 0	3.130	3.2 0	0.5 3	4.	1.1	22.0	1.2
	<u> </u>	1 50	•13.2	2 0	24 22.	66	•1	31	111	6
	13.0	13.0		21.1	22	12.5	• 13.2	13.2	14.	20.1
	54.	42.3	41.5	144	154	52.	243	133	164	151
	1.2	0.4	0.55	11.315	11, 5	1.25	20.2	12.	21.	12.2
	0.025	0.030	0.02	0.051	0.052	0.02	/	/	/	/
	0.3 1	0.2 6	0.32	1.560	1.450	0.360	/	/	/	/
~	0.2	1. 20	1.030	0.365	0.406	0.336	/	/	/	/
	11	3 2	346	25	50	4.3	/	/	/	/
	10. 0	. 40	.610	26.40	26. 0	10.50	30.6	32.2	40.1	26.4
	23.00	1,0	1.40	51.50	54. 0	22.30	5.	62. . 4	2.3	52.5
	2. 0	2.520	2.510	5. 50	6.1 0	2.6 0	6.	. •4	10.5	6.4
	11. 0	11. 0	11.60	22.30	24.30	11.60	2.5	31.2	43.1	24.4
)	2.540	2. 00	2.6 0 0 0	4.4 0	4. 00	2.3 0	4.5	5.2	6	4.5
	0 6	0.1	0. 0	1.163	1.25	0. 3	1.45	1.5	2.0	1.03
	2.4 0	2. 13	2. 54	4.14	4.46	2.522	3.56	4.01	5.35	4.23
•	0.3 6	0.3	0.3	0.612	0.660	0.3 4	0.4	0.54	0.64	0.63
	2.1 0	2.150	2.220	3.420	3.6 0	2.130	2.5	2.	3.24	3.5
	0.46	0.446	0.444	0. 2	0. 5 2.2 0	0.46	0.4	0.52	0.5	0.
	1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.3	1.45	2.25
	0.1 0	0.16	0.1 5	0.304	0.32	0.1 4	0.1	0.2	0.2	0.34
	1.210	1.050	1.120	1,60	2.110	1.210	1.25	1.23	1.24	2.13
	0.1 4	0.164	0.165	0.2 1	0.323	0.1 3	0.20	0.1	0.1	0.34
	1.3 0	0, 41	1.040	3.2 0	3.510	1.460	5.3	3.2	4.16	3. 2
	0.0 4	0.062	0.051	0.5	0.644	0.0	1.35	0.6	1.16	0.6
	0.151	2.0	1.50	2. 5	1.	0.33	/	/	/	/
	0.3 4	0.206	0.200	45.20	35.10	0.41	.13	.0	4.1	21.06
	1. 0	0. 61	0. 1	. 60		1. 0	4.50	2.63	3.20	.41
-	0.500	0.304	0.302	2. 30	·3.4 0	0.501	1.	0.6	1.46	2.5

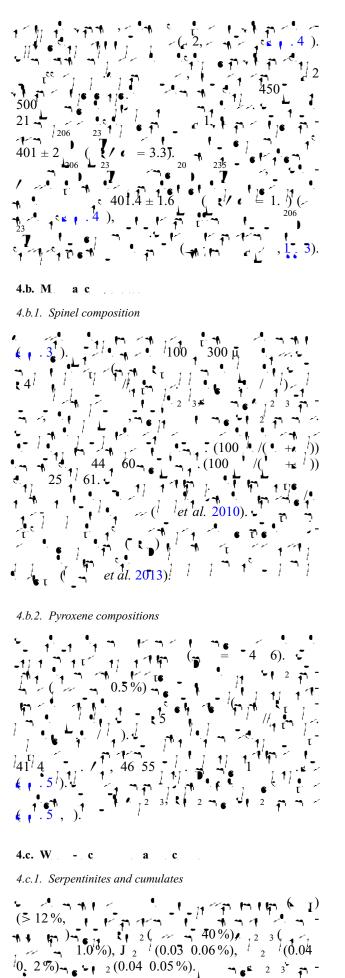
Ŭ,

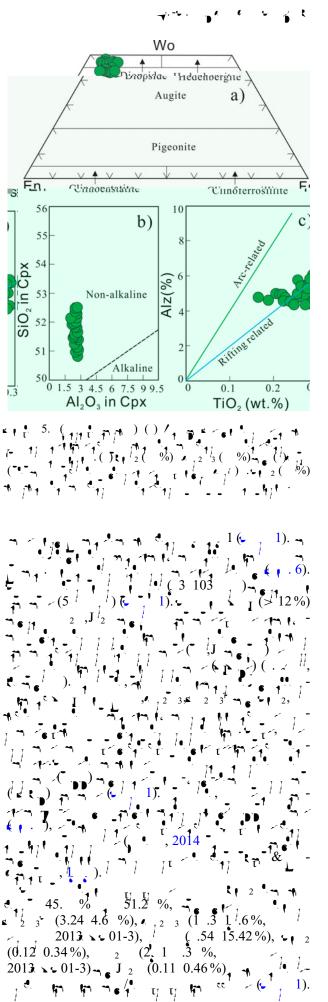
. ۲. ۲.

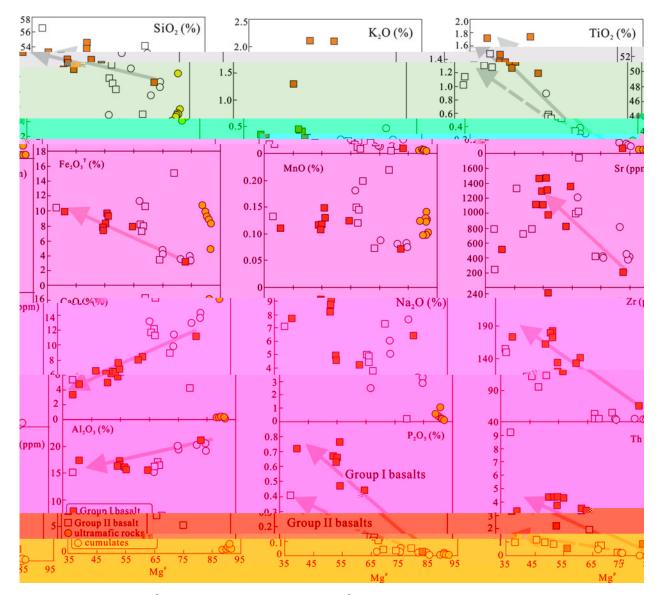

×ّ ب

¢

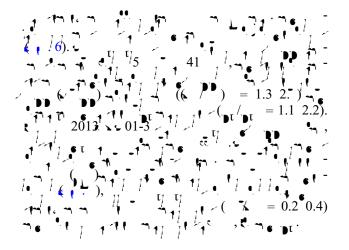
€ <u>1</u> 2. ₹.	• 19	111	1] 1	116-5	÷ _	1-11		l.						
R 1 1		1		$\left(\begin{array}{c} \\ \\ \end{array} \right)$	(₁)	′ ₆ /	¢. / ⁶ ¢. (1σ)	(१./ ९९.)	(¹)	([•] ₁)	¹⁴ (/	¹⁴³ (1σ)	(¹⁴³ / ¹⁴⁴),	$\overset{\epsilon}{(t)}$
2013 x 01 2013 x 01 2013 x 03 2013 x 03 2013 x 03 2013 x 03 2013 x 03	3 10 1 2 3		(c 2) (c 2) (c 1)	0.36 0.5 3.13 2.	3 2 6 6 2 0 1320 516	$\begin{array}{c} 0.002 \\ 0.0024 \\ 0.0335 \\ 0.0063 \\ 0.0452 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.4 2.3 4.4 4.5 5.	10. 11.6 22.3 2 .6 36.	0.13 4 0.1235 0.121 0.1046 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5124 4 0.5124 6 0.512214 0.512245 0.512450	6. .1 1. 6.3

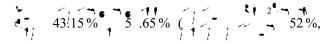

 $(t) = 10\ 000((^{143} \bullet)^{144} \bullet)(t)/(^{143} \bullet)^{144} \bullet)_{T} (t) - 1)\ \epsilon \ (t) - 1)$ (---1-0.11 -

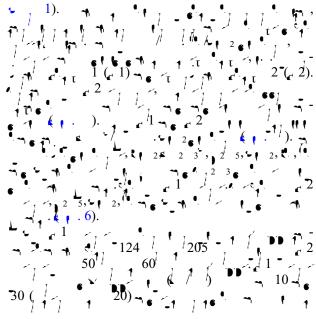

(

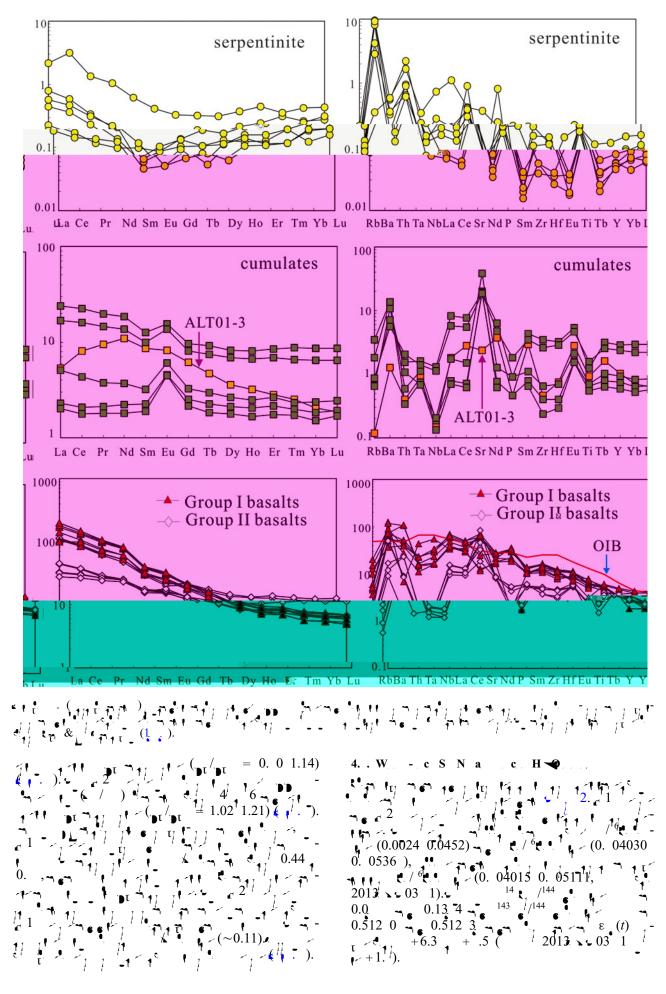


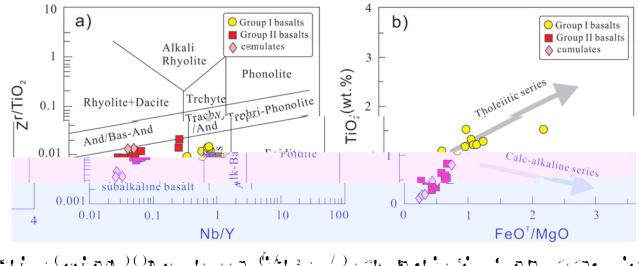
•

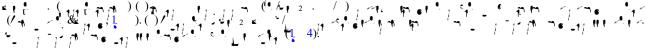


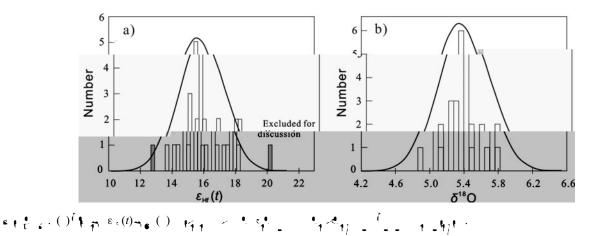

1).

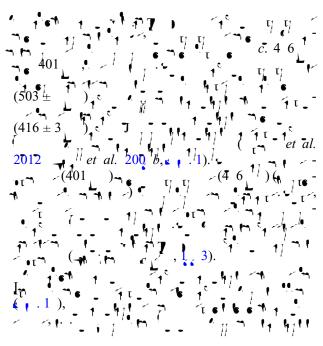


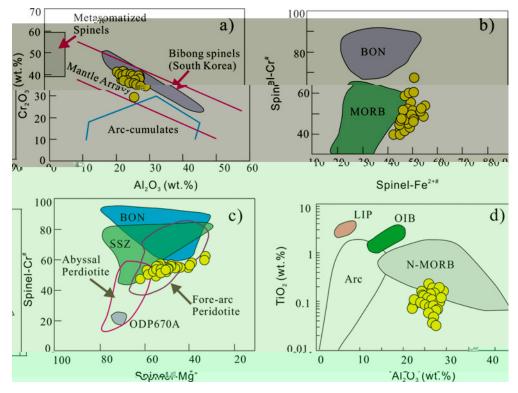

 $\begin{array}{c} t & 6. \\ 1 & 1 & 1 \\ 1$

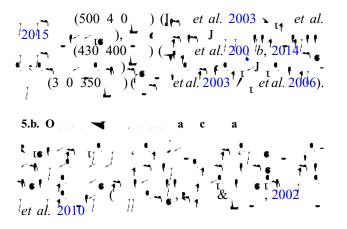



4.c.2. Basalts



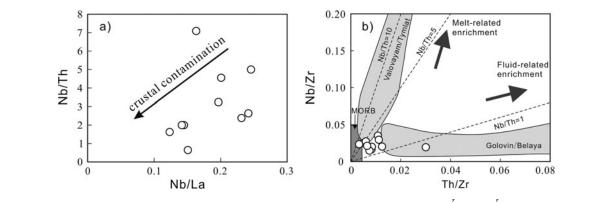


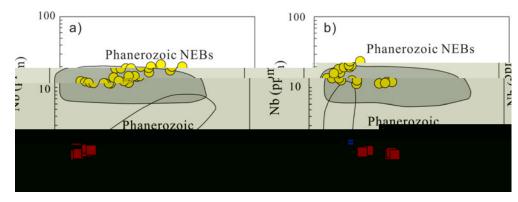



16)ની 15. 5. 3%, 1 ‰ 1 ی .(1 3.3 $\pm 10.23\%$ δ 400.2 20 et al. ī (t _ī 200¹

5. D. c

 $\frac{1}{2}$ 10. $(100^{\circ}, 100^{\circ}, 100^{$ (14,)) (100,) (14,) (100,(%)₆† • 1² 3 | **↑** .(100⊾ *))₁₇ ţ, 7 4 j t • 1] = 1!, (° ~1 ~ ī Ľ 1 • ••• •€€ \$ ۳j۹

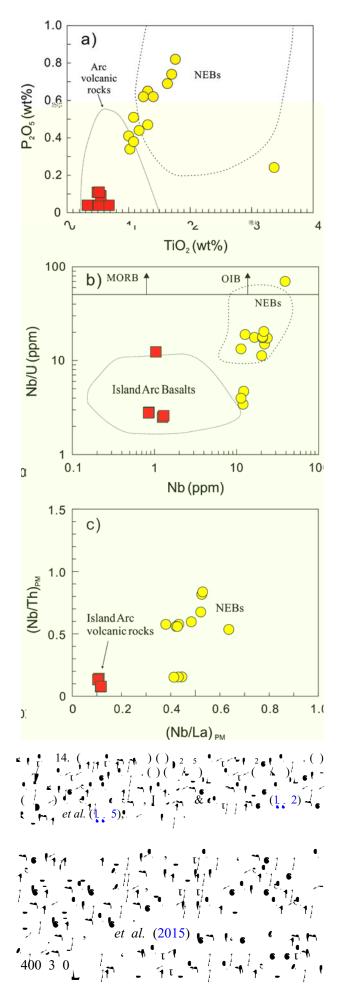




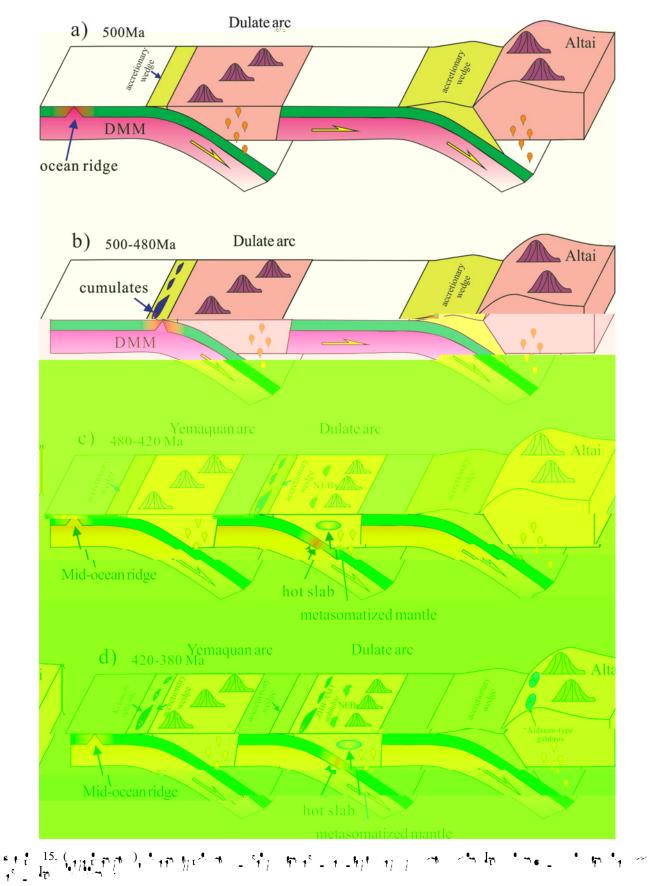
 $\frac{1}{1} + \frac{1}{1} + \frac{1$

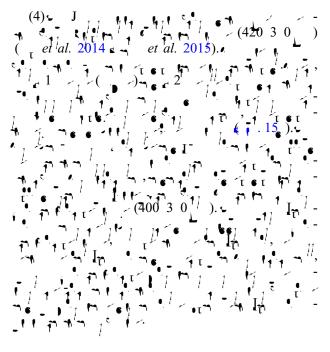
5.c. P 🔫 D 🚈 a ba a

et al. & 200 201 / 6€. 1 1 0613 (0. 0412σ 0. 3 T. (+ľ .5) 20.4) 44 (3 .51 2 **6**) ét al. 2000 et al. & 2 et 'al. <u>6</u>). (200 ¹) • h

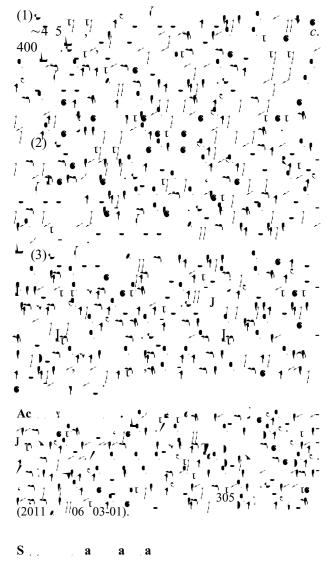


 $\begin{array}{c} \mathbf{r} \left(\begin{array}{c} \mathbf{r} \\ \mathbf{r} \end{array}\right) \left(\begin{array}{c} \mathbf{r} \end{array}\right) \left(\begin{array}{c} \mathbf{r} \\ \mathbf{r} \end{array}\right) \left(\begin{array}{c} \mathbf{r} \end{array}\right) \left($


r 1 (0. 04120 0. 06133) ϵ (t) (1. 6₁0 ļτ 14 11 ε (t)2; < 0.3),& **b** (•/**t**_) (0.6⁺1.0)•. (0. '1.0), (¢/ŧ h, $(0.1 \ 0.2')$ 1 & 2 ې 1 fy f Ź 2 jl -16 1 11]1 1


(1, 14), τ^{2} , r^{2} , r^{2} , r^{1} ,

416 et al. 2014 τ (503 et al! 2015), 1 f llet al. 2013 et al. 2003 🔪 4 5) (400^{t1} τs)(.1 1. ۲۹. *et al.* 2014). 1 ট et al. 200 , 200 a,b et al. 200 a). $(-1)^{t}$ et al. 200 b). 1 67 1 1



6. C c

7. 10.101 / 0016 56 16000042.

- R 🔫 c

- (, t x 14 L' 7, & g a a g a t. In a t a g a g a g a g a g a g a g a g Geology **30**, 0 10.
- (1 (, . . . J . ary Systems in Space and Time (
- (1) = 0 (1) (
- Geological Society of America Bulletin 105, 15'3. , 220

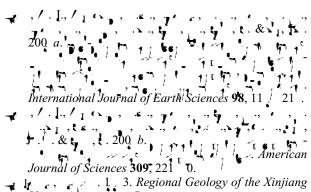
- . Geological Society of America Bulletin 123, 3-1 411.
- Bulletin 123, 3 411.
- $\frac{1}{2} = \frac{1}{2} \frac{$ 2 3 5.

- $c_{1}, c_{1}, I, I_{1}, J_{2}, I_{2}, I_{2$ Geological Bulletin of China 30, 150 15 (Geotogical Bulletih of Chiha 30, 150 15 ($\frac{1}{1}$, \frac Earth (1978–2012) 101, 11 31 and Petrology 139, 20 26. . .). *Transactions of the Royal Society of Edinburgh: Earth Sciences* **91**, 1 1 . 3. Earnourgen: Earne Sciences 91, 1 1 2 3. 1, ..., $\&/_1$, ..., 1 = 0. 1, ..., 1🧏). J. L. Journal of Petrology 42,
- Tectono-physics 326, 255 6

- 1, 2004. , 2004. , Geological Magazine 141, 225 31. 225¹31.
- I, \dots, I, \dots
- 104 54. 104Chinese Science Bulletin 55, 1535 46.
- Geochronological Toolkit for Microsoft Excel. , -
- $\begin{array}{c} \begin{array}{c} & , 1, -\tau & , 1 \\ 1, -\tau & , 1 \\ \tau & , 1 \\ \tau & \tau & \tau \\ \end{array}$
- American Journal of Science 274, 32 355. 11

- $I_{1}, I_{2}, I_{3}, I_{4},
- 200 a. 17-1
 200 a. 17-1
 Acta Petrologica Sinica 25, 16 24 (11 4 1) **.**).

-). Acta Petrologica Sinica 25, 14 4 1 ($40^{1/3}$, $11^{1/3}$, $200^{1/3}$, $40^{1/3}$, $40^{1/3}$, $40^{1/3}$, $40^{1/3}$, $11^{1/3}$, $200^{1/3}$, $11^{1/3}$ entific Results, vol. 176 (< I. ,
- τ_{1} , τ_{1} , τ_{2} , τ
- La . 200 . La . 200 . Lithos 100, 14 4 . Elements 10, 101
- 2. $L_{\rm L}$ Contribution to Mineralogy and Petrology 141, 36, 52. Mineralogy and Petrology 141, 36 52.


- Philosophical Transactions of the Royal Society of London 335, 3 2.

- ⁴ , ¹ ,

Science's 52, 1345 5.

- to Mineralogy and Petrology 155, 1 11. Geology 114, 35'51.

- Geology 20, 325 43. (1, 1, 2, ..., L, ...,
- 2013. 111 1 111 Gohdwana Research 23, 1316 41.
- Geological Society, London **161**, 33, 42.

- Chemical Geology 242, 22 3! Acta Geologicā Sinica 80, 254 63 (Acta Geologica Sinica $\mathbf{30}, 234, \mathbf{00}$ ($\mathbf{1}, \mathbf{1}, \mathbf{1$ Chinese Science Bulletin 48, 2231' 5. (..., 2013.) (..., 1, ...,
- Annual Review of Earth and Planetary Sciences 14, 4 3 5 1.